skip to main content


Search for: All records

Creators/Authors contains: "Henry, Asegun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Polymers are a unique class of materials from the perspective of normal mode analysis. Polymers consist of individual chains with repeating units and strong intra-chain covalent bonds, and amorphous arrangements among chains with weak inter-chain van der Waals and for some polymers also electrostatic interactions. Intuitively, this strong heterogeneity in bond strength can give rise to special features in the constituent phonons, but such effects have not been studied deeply before. Here, we use lattice dynamics and molecular dynamics to perform modal analysis of the thermal conductivity in amorphous polymers. We find an abnormally large population of localized modes in amorphous polymers, which is fundamentally different from amorphous inorganic materials. Contrary to the common picture of thermal transport, localized modes in amorphous polymers are found to be the dominant contributors to thermal conductivity. We find that a significant portion of the localization happens within individual chains, but heat is dominantly conducted when localized modes involve two chains. These results suggest localized modes generally play a key role in thermal transport for different polymers. The results provide an alternative perspective on why polymer thermal conductivity is generally quite low and gives insight into how to potentially change it.

     
    more » « less
  2. Thermal transport across solid interfaces is of great importance for applications like power electronics. In this work, we perform non-equilibrium molecular dynamics simulations to study the effect of light atoms on the thermal transport across SiC/GaN interfaces, where light atoms refer to substitutional or interstitial defect atoms lighter than those in the pristine lattice. Various light atom doping features, such as the light atom concentration, mass of the light atom, and skin depth of the doped region, have been investigated. It is found that substituting Ga atoms in the GaN lattice with lighter atoms ( e.g. boron atoms) with 50% concentration near the interface can increase the thermal boundary conductance (TBC) by up to 50%. If light atoms are introduced interstitially, a similar increase in TBC is observed. Spectral analysis of interfacial heat transfer reveals that the enhanced TBC can be attributed to the stronger coupling of mid- and high-frequency phonons after introducing light atoms. We have also further included quantum correction, which reduces the amount of enhancement, but it still exists. These results may provide a route to improve TBC across solid interfaces as light atoms can be introduced during material growth. 
    more » « less